

Strategy for Resilient Synchronization of Smart Grids

WSTS 2024 May 5-7 San Diego, CA

Daniel B. Burch - Senior Manager Business Development Chris Cooper – Network Operations Engineer ORNL

YOUR TAX DOLLARS AT WORK!

CAST is a program at Oak Ridge National Laboratory sponsored by the US Department of Energy, Office of Electricity

Center for Alternative –
 Synchronization and Timing

Alternative PNT is a National Security Imperative

Executive order 13905: Strengthening National Resilience Through Responsible Use of Positioning, Navigation, and Timing Services

Critical infrastructure is fundamentally dependent on

PNT

- Power grid
- Finance
- IoT sensors
- Internet
- Communications

Executive Order 13905 of February 12, 2020

Strengthening National Resilience Through Responsible Use of Positioning, Navigation, and Timing Services

By the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows:

Section 1. *Purpose*. The national and economic security of the United States depends on the reliable and efficient functioning of critical infrastructure. Since the United States made the Global Positioning System available worldwide, positioning, navigation, and timing (PNT) services provided by space-based systems have become a largely invisible utility for technology and infrastructure, including the electrical power grid, communications infrastructure and mobile devices, all modes of transportation, precision agriculture, weather forecasting, and emergency response. Because of the widespread adoption of PNT services, the disruption or manipulation of these services has the potential to adversely affect the national and economic security of the United States. To strengthen national resilience, the Federal Government must foster the responsible use of PNT services by critical infrastructure owners and operators.

Tighter NTP-to-PTP data timestamping accuracy requirements

Grid applications	Timing requirements (min reporting resolution & accuracy relative to UTC)
Advanced time-of-use meters	15, 30, and 60 minute intervals are commonly specified (ANSI C12.1)
Non-TOU meters	Ongoing, with monthly reads or estimates
SCADA	Every 4-6 seconds reporting rate
Sequence of events recorder	50 µs to 2 ms
Digital fault recorder	50 µs to 1 ms
Protective relays	1 ms or better
Synchrophasor/phasor measurement unit (30 - 120 samples/second)	Better than 1 µs 30 to 120 Hz
Traveling wave fault location	100 ns
Micro-PMUs (sample at 512 samples/cycle)	Better than 1 µs
Substation	communications protocols
Substation local area network communication protocols (IEC 61850 GOOSE)	100 µs to 1 ms synchronization
Substation LANs (IEC 61850 Sample Values)	l µs

Developing Wide-Area Time Synchronization Solutions to Augment GPS for US Critical Infrastructure

National Security & Modernization Imperative	One-of-a-Kind Testbed with Dozens of Commercial Partners	R&D and T&E of Novel Timing Architectures for the Grid	Established Capacity for Transition to Utilities
 GPS is an amazing capability but is vulnerable to spoofing and other cyber threats Executive Order 13905 (2020): National Resilience through PNT PTP timing necessary for a smart grid 	 Leveraging COTS capabilities to evaluate against strict accuracy & cyber requirements of the grid Partnerships to improve, refine, and adapt OEM capabilities 	 Developing nanosecond-scale secure timing solutions Testing across a variety of terrestrial and space-based comms links Evaluating integrations with existing utility equipment baselines 	 CAST is collaborates with PMAs and utilities to demonstrate and implement new synchronization capabilities Team is documenting best practices for sharing with and supporting utilities

GPS Constellation vs Iridium (LEO) Constellation

GPS Nominal Constellation 24+ Satellites in 6 Orbital Planes 4 Satellites in each Plane 20,180 km Altitude, 55 Degree Inclinations Orbital speed 14,000 km/hr (9k mph) Orbital period 12 hours (2x/day) Different satellite in each plane every 3 hrs Iridium Nominal Constellation 66 Satellites in 6 Orbital Planes 11 Satellites in each Plane 781 km Altitude, Polar orbits (86.4 degrees) Orbital speed 27,000 km/hr (17k mph) Orbital period 100 minutes (14x/day) Different satellite in each plane every 9 min

Satellites Needed for STLvsGPS/GNSS

Iridium (LEO) Satellites circle the Earth every **100 minutes**. They move so fast their ranging angle can change up to 1 degree every 4 seconds, enabling a user location using just 1 satellite in view.

Adtran company

GPS/GNSS (MEO) Satellites circle the Earth every 12 hours. They move so slowly that at least 4 satellites must be used to determine a user's location.

National Laboratory

GPS#2

VII

ORNL zero-trust multisource backup timing architecture

CAST Current R&D Priorities

PTP over OTN	PTP over 5G	PTP over Satellite Internet	Geographic Redudency
Critical for private and	Critical for low-cost	Critical for low-cost	Critical for authoritative
protected high-speed	distribution to austere	distribution to austere	time strata fail-over to
networks	environments	environments and	ensure master clock
	Å	mobile deployments	resilience
Multi Source Common View	NTS4PTP Security	Operations Insights	Real-Time Dashboard
Critical for	Critical for securing the	Critical for sharing the	Critical for monitoring,
Critical for synchronization of	Critical for securing the timing signal at a low	Critical for sharing the best practices for timing	Critical for monitoring, visualizing, and
Critical for synchronization of disconnected grand	Critical for securing the timing signal at a low cost	Critical for sharing the best practices for timing equipment operations	Critical for monitoring, visualizing, and analyzing system state

Multi-Tier Timing Architecture for Resilient PNT

ORNL Timing & Synchronization Test-Bed: Industry-Leading Technologies and Nationwide Partnerships

One-of-a-Kind Technology Baseline

Multiple atomic clocks

- One optically-pumped cesium clock
- Two magnetic cesium clocks
- Two rubidium clocks

Cyber accredited, industry leading firewall and signal encryption Multiple **communications networks** integrated to the lab

- Dark fiber \cap
- DWDM \cap
- Carrier Ethernet
- OTN \cap

- DOE ESNet
- Cellular/5G \cap
- Dedicated SATCOM Satellite Internet

Industry and Lab Partnerships for Testing and Development

Hardware

- Adtran Oscilloguartz
- Microchip
- Palo Alto
- Juniper
- Arista
- Nokia
- Safran

Communications

- ESNet
- AT&T, Verizon
- SES Government
- InMarSat
- Iris Networks

- R&D and Testing
- Idaho National I ab
- Sandia National Lab
- Savannah River National Lab
- National Institute of Standards of Technology (NIST)
- Electric Power Board of Chattanooga (EPB)
- Public Service Company of New Mexico (PNM)
- **Dominion Energy**
- Western Area Power Administration (WAPA)

Real-Time Clock Measurements

GMC #1 Oscilloquartz 5422 (Rb w/ MB-GNSS Reference)

~ GMC #2 Oscilloquartz 5422 (Rb w/ MB-GNSS Reference)

QUARTZ

An Adtran company

Network Routing Change Affected Latency

Network Delay - SRNL vs GMC#1 (5-min avg. ns) ~	<i>C</i> → ⊕	:00:00 - > Q	to 2022-12-21 00:0	22-12-01 00:00:00	< (O) 2			-	oard 🚖 «
					(5-min avg; ns) ~	ay - SRNL vs GMC#1	Network Del		
2022-12-15 09:20:00 - 10.0.2.101-10.0.1.70: -66 K									
2022-12-15 09-20:00 									
2022-12-15 09-20:00 - 10.0.2.101-10.0.1.70: -68 K									
2022-12-15 09-20-00 - 10.0.2.101-10.0.1.70: -68 K									
2022-12-15 09:20:00 - 10.0.2.101-10.0.1.70: -68 K									
- 10.0.2.101-10.0.1.70: -68 K		09:20:00	2022-12-15 0						
		0.1.70: -68 K	- 10.0.2.101-10.0						
	1200	10/14	2247	10.45	10/10	12.01		12.02	1005

Network Routing Change Affecting PTP

GM Normal ePRTC Locked

Identification						
Entity ID: TIME CLOCK	-1-1-1-1					
Status						
Selected Reference	: GPS-1-1-1-1	TC Lock I	Progress (%)	: 100	
Clock Mode	: Locked	ePRTC He	oldover R	eady Progress (%)	: 100	
Leap59	: False	Holdover	Estimate	d Drift (nSec)	: Not Applica	ble
Leap61	: False	Expected	Time Lef	t In EPRTC Holdove	r: Not Applica	ble
Time Traceability Stat	us: Time Locked	Current M	lode		: EPRTC	
UTC Offset	: 37	Cross Re	ference V	alidation Status	: N/A	
Current QL	: QL-EPRTC					
Current Time Of Day	: 2024-04-10 19:	09:17 TAI				
User Requests						
Request: None Target : None						
Output Steering						
Steering Status	: Idle					
Time to target(sec)	: 0					
Accumulated Steering	offset(sec) : 0					
Accumulated Steering	offset(nsec): 0					
Time Clock Reference L	ist					
	levitu Course	Course Status	Shake		Alles	
TIMEDEE 1 1 1 1 1	NA CDS 1 1 1 1	Source Status	Activo		Allas	
TIMEREF-1-1-1-1	NA GPS-1-1-1-1	Reference OK	Active	NA Tura II		
TIMEREF-1-1-1-1-2	NA CLK-1-1-1-1	Reference Frequency OK	Active	Type II		

Clock Probe – GM locked ePRTC Mode

GM GPS Lost but ePRTC Locked (Holdover to Cs)

tatus				
Selected Reference	: CLK-1-1-1-1	TC Lock	Progress (%)	: Not Applicable
Clock Mode	: Locked	ePRTC H	oldover Ready Progress (%) : Not Applicable
Leap59	: False	Holdove	Estimated Drift (nSec)	: Not Applicable
Leap61	: False	Expected	I Time Left In EPRTC Holdo	ver: Not Applicable
Time Traceability Sta	tus: Time Holdove	er Current	Mode	: EPRTC
UTC Offset	: 37			
Current QL	: QL-EEC1			
Current Time Of Day	: 2024-04-10	18:48:02 TAI		
ser Requests				
Request: None				
Target : None				
me Clock Reference	List			
me Clock Reference	List			
me Clock Reference	List Priority Source	e Source Status	State Alias	

Clock Probe GM Holdover to Cs

XVIII

Clock Probe Time Receiver

Testing in Real World Environment

PTP Probe – Site A - 98km from GM

PTP Probe – Site B - 210km from GM

PTP Probe – Site C - 365km from GM

A word about NTP sourcing

- External NTP leaves your network vulnerable
- NTP packets and GPS signals can be manipulated to cause harm to your network
- Using internal NTP provided by a Grand Master Clock closes a pinhole into your network

Conclusions

- End users lack knowledge and experience required to deploy PTP in a network
- Must plan for and understand network rearrangements on the fly
- Ability for clocks to perform advanced testing is big plus (probing)
- PTP actually good tool for analyzing network performance (latency, etc.)
- Large installations require global view of timing (management system)
- Proving that network timing can be maintained during loss of GNSS/GPS (when properly planned)
- Prompt, expert vendor support is paramount to success
- Increased learning through partner participation
- Must be able to survive in multi-vendor environment
- Understanding how different network configurations, elements impact PTP

Learn more about the Center for Alternative Synchronization and Timing by visiting <u>https://cast.ornl.gov/</u>

XXVI

Thank You!

Daniel B. Burch – daniel.burch@adtran.com Chris Cooper – coopercs@ornl.gov

